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1. Introduction

Radar modeling of mangal forest stands, in the Sundarbans area of Southern Bangladesh,

has been developed. The modeling employs radar system parameters such as wavelength, polari-

zation, and incidence angle, with forest data on tree height, spacing, biomass, species combina-

tions, and water content (including slightly conductive water) both in leaves and trunks of the

mangal. For Sundri and Gewa tropical mangal forests, five model components are proposed,

which are required to explain the contributions of various forest species combinations in the

attenuation and scattering of mangal vegetated nonflooded or flooded surfaces. Statistical data of

simulated images (HH components only) have been compared with those of SIR-B images both to

refine the modeling procedures and to appropriately characterize the model output. The possibil-

ity of delineation of flooded or non-flooded boundaries is discussed.

2. Characteristics of Mangal Forests in Southern Bangladesh

2.1. Gewa and Sundri Trees

Gewa (Exeoeearia agallocha) and Sundri (Heritiera minor Syn. H. forme,) are mangrove
/

species. The shoots are mostly orthotropic with infrequent diffuse branches, which sometimes

may branch from the base and shrub-like form. Leaves are simple in shapes; and broad in size

(Tomlinson, 1986). Gewa lacks any elaborated aerial part or pneumatophores, which function to

supply oxygen to the roots at high tide. Sundri does have pneumatophores.

A mature Oewa tree grows intermittently and irregularly, up to 20 meters high for a mature

tree. Branching is diffuse, irregular, and by prolepsis. The canopy is dense. A mature Sundri

tree is about 10 to 25 meters tall, and low-branched. The branches are thick and crooked, and

the canopy is very dense.

2.2. Gewa and Sundrl Forest Stands

Gewa and Sundri forests occur dominantly at the tidal mouth of the Baleswar River in

southern Bangladesh, which belong to closed broadleaved woody tropical rain forests (FAO, 1981).

Most of the mouth areas are frequently flooded by fresh water during the monsoon rains (May -

June to October - November, Chapman, 1977), with salt water intrusion during the rest of the

year. Gewa and Sundri forests are very difficult of access with soft footing, and have extremely

high canopy and stem densities. The mangrove forests in this area are estimated at about 590,000
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hectares(FAO,1982),whichcontributeveryimportant forest resources and environmental protec-

tion for Bangladesh: they provide marketable products, and also play roles as buffers for storm

surges, and tidal waves coming from the Bay of Bengal (Imhoff et al., 1986).
4

2.3. Ground Surfaces

The Delta soil is a clay loam lying over alternating layers of clay and sand, highly saturated

with exchangeable bases (Na +, Ca ++, K +, etc.). The salinity of the soil varies seasonally as a

result of the changing balance of fresh water and salt water. Chapman (1977) pointed out that

there is a very high salinity at the beginning of the dry season, and this factor considerably limits

the development, maintenance, or regeneration of the less halophilous species such as Sundri,

which is on the way to extinction because of excessive salt water intrusion. During the rainy sea-

son (when the SIR-B images were obtained), the salinity will be low.

3. Analysis of Ground Truth Data

Ground truth data of Sundri and Gewa mangal forest in our southern Bangladesh research

site were originally collected by a NASA and Bangladesh science team concurrently with the SIR-

B Mission in October, 1984; and subsequently by Chaffey, et al., (1985). All these data were

prepared by averaging measurements made for inventory plots (100 * 100 meters in size), consist-

ing of:

a. a digitized forest stand map which was used to locate and extract each forest stand data

from the SIR-B images. The ground surface is clarified as either flooded or nonflooded sur-

face, based on field observations.

b. DBH count distributions by DBH segments, employed to generate random aerial root (pneu-

matophore), and tree trunk distributions with varying DBHs in simulated stand areas.

c. tree heights and canopy depths by their DBHs were used to compute each tree height and

mean canopy depth in each simulated pixel in a forest stand based on the DBH counts for

each DBH segment in that pixel.

d. canopy biomass of in each DBH segment was employed to calculate attenuation coefficients

of canopies.

e. gravimetric moisture content of canopies and trunks was used to derive the relative dielec-

tric constants of the leaves and the tree trunks.
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4. Radar Models of Sundrl and Gewa Forest Stands

Based on the above analysis, five components are proposed, as shown in Figure 1 (see also

Wang, et al., 1989):

° - 1 Direct backscattering from various surfaces (a_e),

2 volume scattering from canopy (a_),

3 double-bounce specular reflection of tree trunk-surface (_0),

4 double-bounce specular reflection of aerial roots-surface (ad°ra), and

5 multiple scattering of surface-canopy (a°0_).

Thus, the total radar return is

0 0 O •atot a,_o + a_o_ + a_, + ad,, + arnse

It should be noted that all these model components may or may not be attenuated by the canopy,

by the aerial root layer, and/or by the tree trunk layer, depending on their presence or not (see

Figure 1.).

5. Discussion :

5.1. The Fit of the Models to the SIR-B Images (HH polarization only)

Three forest stands were extracted from SIR-B images (DT 120, incidence angle 26°; and

DT 104, incidence angle 46 ° ; see also Imhoff et al. 1986), and the image DNs were converted to

relative radar backscattering coefficients (dB) by

a ° _10 _ Iog(DN 2- C1_)- C2_

where i _ 1, 2, corresponding to DT 120 and DT 104. C1; are the noise levels, C2i constants

for calibration. Both C1_" and C2; were provided by Jet Propulsion Laboratory (JPL), as shown

in Table 5.1.

The radar returns for each stand at the two incidence angles, given in Table 5.2, show that

there are differences in the absolute values in that the returns from SIR-B images are lower than

those of our model results. The mean (p) and standard deviation (a) of the differences, in dB, are

p2_o _ -10.9, a260 _ 0.90; and p46o _- -9.4, a4¢o _ 0.86. The reason for the differences may be

that the models are theoretical solutions and each model component is incoherently added, which

will almost certainly produce higher values than the actual coherent summation of the
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electromagneticfield,whichwe cannotperformbecauseof the complexityof the environment.

Thesameevidenceof higherincoherentsummationwasalsofoundby SunandSimonett(1988).

Also,SIR-Bhadsomemajorcalibrationproblems,whichmayproduceuncertaintyasto thetrue
4

values of C1¢ and G2i (Wall and Curlander, 1988). Because the standard deviations of the

differences are relatively small, after the model results are shifted down (/_2_0 and V4_o for 26 °

and 46 ° incidence angles, respectively), the model results match the SIR-B images well in disper-

sion.

In order to better assess the model's ability to predict differences in returns from difference

stands, stand Gn was selected as a reference, and a ° for each stand relative to that for Gn was

calculated by subtraction (equivalent to a ratio, after logl0 operation). There is good agreement

between the model and SIR-B results (Table 5.3): all inter-stand comparisons at both angles

agreed in sign except for (SGn - Gn) and (SGn -Gn) at 26°; and (GSn - Gn) and (SGn- Gn) at

46 ° . The magnitudes of the differences agreed very well for some stands (Gf - Gn) but poorly for

others (SGn - Gn, and SGf- Gn).

5.2. Radar Returns from Nonflooded and Flooded Areas

It is well understood that some types of flooded forest yield brighter L-band returns than

unflooded stands (Stone and Woodwell, 1985; Richards et al., 1987). SIR-B and model results

given in Table 5.4 show that although flooded stands yield higher returns than nonflooded stands

in all but one case, the difference was not very great. The differences ranged from 0.5 to 3.2 dB

for SIR-B images; 0.9 to 1.7 dB for model results at HH polarization; and 0.1 to 1.2 clB for model

results at W polarization. Most were less than 1.5 dB. The lack of a marked difference may

result from strong attenuation by the dense canopy, and also from the uncertainty in the locations

of the flooded and nonflooded areas due to changing tidal inundation, when the areas were imaged

at 20:31 at GMT (3:31 am local time) for DT 120 and at 20:48 GMT (3:48 am local time) (Cimino

et al., 1988). The difference in returns between flooded and nonflooded stands was, on average,

greatest for GS, and least for SG, at both incidence angles. SG was the only stand for which

SIR-B flooded returns were less than nonfloodcd returns (a 0.4 dB reduction). Due to uncertainty

in calibration of a ° , these small differences cannot be considered significant; in most cases they

are less than one standard deviation of the stand means (Table 5.6). The differences are probably

not large enough to delineate the flooded boundaries with confidence. Also, there are no obvious

visual boundaries on the SIR-B images between those stand areas and surrounding areas, because
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of the high intrinsic variance in SIR-B images and the patchiness of the flooded areas.

5.3. Differences in Radar Returns between Different Stands

o _- For both flooded and nonflooded stands, there are only small differences (ranging -1.8 to 0.8

dB) (Table 5.5). This may be explained as follows: a) each stand is a mix of Sundri and Gewa in

varying proportions; b) the number of stems is very large and the canopy is very dense, which are

of importance both in enhancing a_0 and a_° and in attenuation; and e) the structure of Sundri

and Cewa are similar to each other (Tomlinson, 1986).

5.4. Radar Returns as a Function of Different Incidence Angles

The mean returns at different incidence angles are almost the same, but with greater vari-

ance at the smaller incidence angle, as tabulated in Table 5.6. At the smaller incidence angle,

there is a shorter path length through the canopy, yielding less attenuation for the cr_ a and the

a_0 terms, which are the main component producing the variance for mangal: a similar conclu-

sion was reached by Sun and Simonett (1988) for pine forest.

5.5. Relative Importance of Model Components

The dominant model components are a_0 at HH polarization. At W polarization, a_°,

a_0, and a,_ c are roughly equal to each other for nonflooded and flooded surfaces (Table 5.7).

For flooded surfaces a_, and a_e are increased, and a,_c is unchanged. In areas where there are

some natural clearings which lack the dense canopy layer, a_, and a_, are clearly dominant.

The high returns from forest edges facing the radar illumination direction on the SIR-B images

are notable.

6. Publication Produced under this Contract

Wang, Y., M. L. Imhoff, and D. S. Simonett, (1989), "Radar modeling of mangal forest stands",

The Proceedings of the IGARSS'89, voh 4, pp. 2497-2500. Vancouver, Canada, July, 1989.
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Table5.1.ConversionconstantsfromDNsto dBfor SIR-Bimages(HH)

Cx_ C2i
4

- -" DT 120 (26 ° incidence angle) 3157.5 55.5

DT 104 (46 ° incidence angle) 4389.1 56.4

Formulas for conversion of SIR-B image DNs to ¢r° in dBs is:

a ° = lO*log[DN2-Cl_] - C_i

where i _-- I, 2, corresponding to DT 120 and DT 104 of SIR-B images. These data were pro-

vided Jet Propulsion Laboratory.

Table 5.2. Mean a ° (dB) of SIR-B images (HI-I) and model results

r

Stands Gn Gf GSn GSf SGn SGf

26 °

46 °

SIR-B images (HH)

Model results (HH)

Differences (HtI)*

Model results (VV)

-13.5 -12.2 -14.4 -12.2 -13.6 -14.0

-3.1 -2.1 -3.5 -1.8 -2.5 -1.4

-10.4 -10.1 -10.9 -10.4 -11.1 -12.6

-7.0 -6.8 -7.0 -6.9 -7.4 -7.0

SIR-B images (HH)

Model results (HH)

Differences (HH)*

Model results (VV)

-13.4 -12.1 -14.5 -11.3 -13.6 -13.1

-4.3 -3.4 -4.0 -3.1 -3.6 -2.7

-9.1 -8.7 -10.5 -8.2 -10.0 -10.4

-7.2 -6.0 -7.5 -6.3 -7.8 -6.7

* The differences are defined as the dB values of SIR-B images minus those of model results

(HH). The means (p) and the standard deviations (a) of the differences are P260 ---_ -10.9, a2a0 -----

0.90, and P46o = -9.9, a46o _ 0.95.
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Table5.3.Differencesof (meana ° , in dB) for model results and SIR-B images

Gn-Gn Gf-Gn GSn-Gn GSf-Gn SGn-Gn SGf-Gn

26 o SIR-B images (HH) 0.0 1.3 -0.9 1.3 -0.1 -0.5

, _- Model results (HH) 0.0 1.0 -0.4 1.3 0.6 1.7

Model results (VV) 0.0 0.2 0.0 0.1 -0.4 0.0

46 ° SIR-B images (HH) 0.0 1.3 -1.1 2.1 -0.2 0.3

IVfodel results (HH) 0.0 0.9 0.3 1.2 0.7 1.6

Model results (VV) 0.0 1.2 -0.3 0.9 -0.6 0.5

Stand Gn was selected as a reference. The radar returns for the other stands minus the

return of Gn were calculated for both model results (HH and VV) and SIR-B images (HH).

Table 5.4. Differences of (mean a ° , in dB) between flooded and nonflooded stands

Gf- Gn GSf- GSn SGf- SGn

26 ° SIR-B images (HH) 1.3 2.2 .-/ -0.4

Model results (HI-I) 1.0 1.7 1.1

Model results (VV) 0.2 0.1 0.4

46 ° SIR-B images (HH) 1.3 3.2 0.5

Model results (HH) 0.9 0.9 0.9

Model results (W) 1.2 1.2 1.1
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Table 5.5. Differences of (mean a ° , in dB) between different stands

Nonflooded Flooded

GSn - Gn SGn - Gn GSf- Gf SGf- Gf

26 ° SIR-B images (HH) -0.9 -0.1 0.0 -1.8

* " Model results (HH) -0.4 0.6 0.3 0.7

Model results (VV) 0.0 -0.4 -0.1 -0.2

46 ° SIR-B images (HI-I) -1.1 -0.2 0.8 -1.0

Model results (I-[H) 0.3 0.7 0.3 0.7

Model results (W) -0.3 -0.6 -0.3 -0.7

Gn and Gf (for model results and SIR-B images) were selected as references for nonflooded

and flooded stands, respectively.

Table 5.6. a ° (dB) as a function of incidence angles

Mean vMues

Gn Gf GSn GSf SGn SGf

SIR-B images (HH) 26 ° -13.5 -12.2 -14.4 -12.2 -13.6 -13.4
46 ° -13.4 -12.1 -14.5 -11.3 -13.6 -13.1

Differences -0.1 -0.1 0.1 0.9 0.0 0.3

Model results (HH) 26* -3.1 -2.1 -3.5 -1.8 -2.5 -1.4

46 ° -4.3 -3.4 -4.0 -3.1 -3.6 -2.7

Differences 1.2 1.3 0.5 1.3 1.1 1.3

Model results (VV) 26 o -7.0 -6.8 -7.0 -6.9 -7.4 -7.0

46 o -7.2 -6.0 -7.5 -6.3 -7.8 -6.7

Differences 0.2 -0.8 0.5 -0.6 0.4 0.3

Standard derivations

Gn Gf GSn GSf SGn SGf

SIR-B images (HH) 26 ° 2.04 2.06 2.03 2.09 1.86 3.46

46 ° 1.41 1.75 1.45 1.18 1.33 1.27

Model results (HH) 26 ° 0.21 0.23 0.19 0.20 0.19 0.22

460 0.27 0.29 0.20 0.21 0.22 0.23

Model results (W) 26 ° 0.34 0.39 0.28 0.32 0.26 0.31

46 ° 0.19 0.15 0.16 0.14 0.19 0.15
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Table 5.7. Relative importance of model components (mean a ° ,

Gf

GSn

GSf

SGn

SGf

26° (un)
26° (W)
46° (nil)
46° (VV)

26° (HH)
26° (vv)
46* (HH)
46° (vv)

26° (HH)
26° (vv)
46° (HH)
46' (w)

26" (m-t)
26" (w)
46° (rot)
46° (w)

26' (HH)
26° (w)
4_o (un)
46o (w)

26° (HH)
26o (w)
46° (rot)
46' (w)

-22.3 -12.7 -5.3 -7.3 -11.2

-22.4 -12.7 -14.9 -10.7 -15.1

-50.3 -13.1 -5.4 -11.8 -12.2

-46.7 -13.1 -12.9 -8.7 -19.2

-12.9 -12.3 -7.0 -11.5 -11.9

-12.5 -12.3 -16.2 -15.1 -15.1

-24.7 -12.7 -6.0 -13.8 -13.6

-21.9 -12.7 -14.1 -11.5 -21.3

-22.9 -12.3 -4.5 -7.9 -11.0

-23.2 -12.3 -14.2 -11.4 -15.0

-51.1 -12.7 -4.9 -12.7 -12.3
]

i

-47.7 -12.7 -12.3 -9.7 -19.5

-14.7 -11.9 -5.0 -10.5 -12.8

-15.3 -11.9 -15.2 -14.4 -17.0

-26.0 -12.3 -5.2 -15.1 -14.0

-23.4 -12.3 -13.4 -13.1 -21.9

-23.9 -11.9 -3.5 -8.9 -II.I

-24.3 -11.9 -13.4 12.6 -15.2

-52.3 -12.3 -4.1 -14.0 -12.8

-49.3 -12.3 -11.6 -11.3 -20.1
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